Joint Optimization of Photovoltaic and Energy Storage in Industrial Parks Considering Power Deviation

ZHENG Yimin

Distributed Energy ›› 2019, Vol. 4 ›› Issue (3) : 16-20.

PDF(1006 KB)
PDF(1006 KB)
Distributed Energy ›› 2019, Vol. 4 ›› Issue (3) : 16-20. DOI: 10.16513/j.cnki.10-1427/tk.2019.03.003
Basic Research

Joint Optimization of Photovoltaic and Energy Storage in Industrial Parks Considering Power Deviation

Author information +
History +

Abstract

The industrial park has the characteristics of large roof area and coincidence of photovoltaic power generation time and peak power consumption. Photovoltaic energy storage system can effectively reduce the cost of electricity purchase, the impact of photovoltaic system, and the economic losses caused by power deviation in the power market environment. In order to obtain the configuration scheme of photovoltaic energy storage system based on optimal energy storage scheduling strategy, aiming at reducing power purchase cost, power deviation penalty and line loss, this paper establishes an optimization model of photovoltaic energy storage system based on power market environment, and optimizes the allocation capacity of photovoltaic and energy storage as well as the scheduling strategy of energy storage. Taking typical daily load data of industrial parks as the research object, the impact of price factors and power deviation level on the configuration results is analyzed, and a practical and feasible photovoltaic energy storage configuration scheme is obtained. The simulation results show that a reasonable photovoltaic storage capacity can effectively reduce the cost.

Key words

photovoltaic energy storage system / capacity allocation / scheduling strategy / electricity market / benefit analysis

Cite this article

Download Citations
Yimin ZHENG. Joint Optimization of Photovoltaic and Energy Storage in Industrial Parks Considering Power Deviation[J]. Distributed Energy Resources. 2019, 4(3): 16-20 https://doi.org/10.16513/j.cnki.10-1427/tk.2019.03.003

References

[1]
LIN Meishun. The clean energy consumption, environment governance and the sustainable economic growth in china[J]. The Journal of Quantitative & Technical Economics, 2017(12): 3-21.
林美顺. 清洁能源消费、环境治理与中国经济可持续增长[J]. 数量经济技术经济研究2017(12): 3-21.
[2]
SU Jian, ZHOU Limei, LI Rui. Cost-benefit analysis of distributed grid-connected photovoltaic power generation[J]. Proceedings of the CSEE, 2013, 33(34): 50-56.
苏剑,周莉梅,李蕊. 分布式光伏发电并网的成本/效益分析[J]. 中国电机工程学报2013, 33(34): 50-56.
[3]
HUANG Wei, LIU Jian, WEI Haokun, et al. Extreme capacity limitations of photovoltaic generators in distribution grids[J]. Power System Protection and Control, 2015, 43(3): 22-28.
黄炜,刘健,魏昊焜,等. 分布式光伏电源极端可接入容量极限研究[J]. 电力系统保护与控制2015, 43(3): 22-28.
[4]
CHEN Shen, MAO Xiaoming, FANG Min. Research progress and prospect of short-time power forecast for wind and solar generating[J]. Guangdong Electric Power, 2014, 27(1): 18-23.
陈深,毛晓明,房敏. 风力和光伏发电短期功率预测研究进展与展望[J]. 广东电力2014, 27(1): 18-23.
[5]
ZENG Liang, QI Huan, CHEN Yingchun. A multi-objective bi-level programming bidding strategy model for generation companies in day-ahead and real-time electricity market[J]. Power System Technology, 2009, 33(1): 65-70.
曾亮,齐欢,陈迎春. 日前和实时市场中发电商多目标二层规划竞价策略[J]. 电网技术2009, 33(1): 65-70.
[6]
CHEN Kebin, QIU Xiaoyan, ZHAO Jinshuai, et al. Sizing and cost analysis of hybrid energy storage system for compensating wind power forecast errors[J]. High Voltage Apparatus, 2018, 54(6): 189-196.
陈科彬,邱晓燕,赵劲帅,等. 用于补偿风电预测误差的混合储能容量配置及成本分析[J]. 高压电器2018, 54(6): 189-196.
[7]
YI Lin, LOU Suhua, WU Yaowu, et al. Optimal battery capacity based on lifetime predicationfor improving the schedulability of the wind power[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 53-59.
易林,娄素华,吴耀武,等. 基于变寿命模型的改善风电可调度性的电池储能容量优化[J]. 电工技术学报2015, 30(15): 53-59.
[8]
LIU Jiantao, CAO Lei, MA Jie, et al. Economic analysis of user's grid-connected PV system based on energy storage system[J]. Acta Energiae Solaris Sinica, 2012, 33(11): 1887-1892.
刘建涛,曹雷,马杰,等. 基于储能系统的用户光伏并网发电系统经济性分析[J]. 太阳能学报2012, 33(11): 1887-1892.
[9]
NI Chihao, LIU Xuezhi. Battery capacity configuration and economic analysis of photovoltaics energy storage system[J]. Zhejiang Electric Power, 2019, 38(1): 1-10.
倪驰昊,刘学智. 光伏储能系统的电池容量配置及经济性分析[J]. 浙江电力2019, 38(1): 1-10.
[10]
CUI Yang, LIU Wen, TANG Yaohua, et al. Anoptimal allocated method for energy storage batteries improving voltage level of distributed network with high penetration of distributed PV[J]. Acta Energiae Solaris Sinica, 2017, 38(5): 1157-1165.
崔杨,刘文,唐耀华,等. 改善光伏高渗透率配电网电压水平的储能电池最优容量配置方法[J]. 太阳能学报2017, 38(5): 1157-1165.
[11]
WU Xiaogang, LIU Zongqi, TIAN Liting, et al. Optimized capacity configuration of photovoltaic generation and energy storage device for stand-alone photovoltaic generation system[J]. Power System Technology, 2014, 38(5): 1271-1276.
吴小刚,刘宗歧,田立亭,等. 独立光伏系统光储容量优化配置方法[J]. 电网技术2014, 38(5): 1271-1276.
[12]
QIAN Zeyu, ZANG Haixiang, CHENG Lexiang, et al. Research on allocation for hybrid energy storage system capacity based on FDM[J]. Guangdong Electric Power, 2018, 31(6): 46-53.
钱则玉,臧海祥,成乐祥,等. 基于FDM的混合储能系统容量配置研究[J]. 广东电力2018, 31(6): 46-53.
[13]
XIE Shixiao, YANG Li, LI Lina. A chance constrained programming based optimal configuration method of hybrid energy storage system[J]. Power System Technology, 2012, 36(5): 79-84.
谢石骁,杨莉,李丽娜. 基于机会约束规划的混合储能优化配置方法[J]. 电网技术2012, 36(5): 79-84.
[14]
LIANG Junjun. Configuration method for storage energy capacity with grid-connected photovoltaic power generation[J]. Guangdong Electric Power, 2017, 30(10): 52-56.
梁君君. 含光伏并网发电的储能容量配置方法[J]. 广东电力2017, 30(10): 52-56.
[15]
ZHAO Weijia, ZHANG Ning, KANG Chongqing. A method of probabilistic distribution estimation of conditional forecast error for power generation[J]. Automation of Electric Power Systems, 2015, 39(16): 8-15.
赵唯嘉,张宁,康重庆,等. 光伏发电出力的条件预测误差概率分布估计方法[J]. 电力系统自动化2015, 39(16): 8-15.
PDF(1006 KB)

Accesses

Citation

Detail

Sections
Recommended

/